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ABSTRACT

End-to-end learning-based video coding has attracted substantial

attentions by compressing video signals as stacked visual features.

This paper proposes an end-to-end deep video codec with jointly

optimized compression and enhancement modules (JCEVC). First,

we propose a dual-path generative adversarial network (DPEG)

to reconstruct video details after compression. An 𝛼-path and a

𝛽-path concurrently reconstruct the structure information and lo-

cal textures. Second, we reuse the DPEG network in both motion

compensation and quality enhancement modules, which are further

combined with other necessary modules to formulate our JCEVC

framework. Third, we employ a joint training of deep video com-

pression and enhancement that further improves the rate-distortion

(RD) performance of compression. Compared with x265 LDP very

fast mode, our JCEVC reduces the average bit-per-pixel (bpp) by

39.39%/54.92% at the same PSNR/MS-SSIM, which outperforms

the state-of-the-art deep video codecs by a considerable margin.

Sourcecode is available at: https://github.com/fwz1021/JCEVC.

CCS CONCEPTS

• Computing methodologies→ Image compression; Recon-

struction.
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1 INTRODUCTION

H.265 34.06dB, 0.193bpp JCEVC 34.56dB, 0.117bpp

H.265 0.9613, 0.193bpp JCEVC 0.9653, 0.0878bpp

Figure 1: Reconstructed frames with H.265 (x265 LDP very

fast) and JCEVC. The JCEVC achieves a significantly higher

RD performance than H.265 by reducing bit-per-pixel (bpp)

almost half whilst retaining competitive PSNR or MS-SSIM.

High efficient video compression has been a challenging task in

multimedia community since 1980s. Researchers have devoted to

improve the rate-distortion (RD) efficiency by introducing more

coding tools, such as hierarchical predictions, coding tree units and

asymmetric partitions, to hybrid video coding structure. In each

generation of video codec, these consisting efforts approximately

halves the compressed bits at the same visual quality. Among them,

the popular H.265/HEVC [39] and H.266/VVC [7] are considered

as the newest achievements of Joint Collaborative Team on Video

Coding (JCT-VC). With the widespread use of high definition (HD)

videos, it is undoubtable that the video coding problem is still a

critical issue in the 5G or B5G era.

Popular video codecs treat the videos as signals. They remove

the spatial-temporal redundancies of videos by low-level transform,

quantization and entropy coding. However, in computer vision

community, the videos can be processed as stacked features, which

allows us to develop end-to-end video codecs with big data and

learning. Recently, the learning-based image codecs [8–11, 13, 17, 20,

22, 29, 44] have surpassed the traditional image codecs in terms of
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compression efficiency, which also inspired learning-based codecs

for videos. In fact, we have witnessed a booming of learning-based

video codecs in the past two years.

These learning-based video codecs utilize deep neural networks

to imitate motion estimation (ME), motion compensation (MC),

residual compression and video reconstruction [3, 15, 18, 19, 21, 24–

28, 33, 34, 45, 46]. Owing the advantage of deep learning on large-

scale datasets, these methods adopt convolutional neural networks

(CNNs), auto-encoders, and/or generative adversarial networks

(GANs) to achieve high coding performances. Among them, [45, 46]

utilized bi-directional prediction while the other methods used one-

way prediction with 1 to 4 references. A separate quality enhance-

ment network was deployed in post-processing stage of [45]. Early

works exhibited superior performances than H.264/AVC or compet-

itive with H.265/HEVC [3, 15, 27, 34]. Recently, deep video codecs

have surpassed H.265/HEVC [18, 19, 21, 24–26, 28, 33, 45, 46]. In

such sense, end-to-end learning-based video codecs have paved

another way of video compression.

Despite of these great efforts, it is still imperative to further im-

prove the RD efficiency of deep video coding. In this paper, we move

the next step that benefits from GAN-based visual enhancement.

To improve the full-reference reconstruction quality, we introduce

a parallel path with residual attention blocks (RABs). This dual-

path enhancement with GAN (DPEG) network is co-trained by a

generative-adversarial process to well reconstruct video frames

after quantization, where a convolutional long short-term memory

(ConvLSTM) network [37] is also incorporated to refer to multi-

ple coded frames. In our codec, this design is reused in both MC

and perceptual enhancement, while the optical flow, auto-encoders

and residual networks are utilized to construct the other modules.

Aiming at an optimal RD performance, we employ a joint training

of modules. The proposed joint compression and enhancement for

deep video coding (JCEVC) achieves superior performance than

H.265, as depicted in Figure 1.

Our main contributions are summarized as follows.

A DPEG network for video reconstruction: We propose the

DPEGwith two paths of different receptive fields. An𝛼-path focuses
on structure features with auto-encoder and ConvLSTM. A 𝛽-path
focuses on texture details with RABs. The fusion of these paths

improves the RD efficiency of deep coding.

A JCEVC framework for end-to-end deep video coding:

We propose the JCEVC framework by reusing DPEG network in

both MC and perceptual enhancement. The other modules of our

JCEVC are constructed by CNN-based optical flow, auto-encoder

and residual networks.

Joint training of video compression and enhancement: We

employ a joint training of compression and enhancement to achieve

an optimal RD tradeoff. To the best of our knowledge, we are the

first to jointly optimize compression and enhancement in end-to-

end deep video coding. Experimental results reveal the effectiveness

of our JCEVC with joint training.

2 RELATEDWORK

Deep image compression. The reigning image codecs, such as

JPEG [41], JPEG2000 [40] and BPG [2], employ frequency transform

and quantization to remove spatial redundancies of images. While

in deep image codecs, auto-encoders, recurrent neural networks

(RNNs) and GANs are widely used. Recent efforts have supported

spatial rate allocation, i.e., to allocate bits based on spatial textures

and contexts [8, 11, 13, 20, 22] or multiple bpps with one network

[9, 44]. In [10], CNN-based ProxIQA was proposed to mimic the

perceptual model for RD tradeoff. In [13], discretized Gaussian

mixture likelihoods were utilized to parameterize latent code dis-

tributions, aiming at a more accurate and flexible entropy model.

In [17], a checkerboard context model was proposed to support

parallel image decoding. In [29], the CNN was employed to design a

wavelet-like transform for removing redundancies. These methods

exploits spatial correlations of single pictures, while our JCEVC

framework focuses on spatial-temporal correlations of successive

pictures, especially the MC module based on DPEG.

Deep video compression. By removing the spatial-temporal

redundancies of video frames,the reigning video codecs, such as

H.265/HEVC and H.266/VVC, achieve significantly higher compres-

sion efficiency than image codecs. These characteristics have also

been utilized in deep video coding. A classic method, called deep

video compression (DVC) [27], replicated ME/MC, transform /quan-

tization and entropy coding with optical flow, non-linear residual

encoder and CNN, respectively. In [26], an error-propagation-aware

training was proposed to address error propagation and content

adaptive compression in DVC. In [28], two variants of DVC, DVC

Lite and DVC Pro, were designed with different coding complexities.

In [24], CNN-based motion vector (MV) prediction, MV refinement,

multi-frameMC and residual refinementwere introduced to develop

multi-frame prediction for learned video compression (M-LVC). In

[45], hierarchical learned video compression (HLVC) introduced

hierarchical group-of-picture (GOP) structure which had shown

its high efficiency since H.264 scalable coding. It also utilized a

weighted recurrent quality enhancement to further improve the

visual quality at decoder-end. In [46], a recurrent learned video com-

pression (RLVC) employed recurrent auto-encoder and recurrent

probability model for improved MV and residual compression.

The rate allocation of deep video coding was first realized by

[15] and [34], which utilized deep generative model and recursive

network for high compression efficiency. [3] designed a scale-space

flow to improveME robustness under common failure cases, e.g., dis-

occlusion and fast motion. [18] designed a resolution-adaptive flow

coding (RaFC) to effectively compress optical flow maps globally

and locally. In [21], encoder complexity is optimized with less model

parameters. In [33], an efficient, learned and flexible video coding

(ELF-VC) was proposed to support flexible rate coding with high

RD efficiency. Recently, [19] and [25] came up with different ways

(CNN or GAN) to compress video contents via low-dimensional

feature representations, which were further utilized to reconstruct

video frames. In our work, the dual-path DPEG network is intro-

duced to extensively reduce the spatial-temporal redundancies and

show a significantly increased compression efficiency.

Visual enhancement. The visual enhancement techniques are

utilized to improve the visual quality of images or videos. Gener-

ally, image enhancement can be achieved by GAN [12, 31] or CNN

[23, 38]. In [47], amulti-frame quality enhancement (MFQE)method

utilized high-quality frames to enhance low-quality frames, where

the high-quality frames were detected with support vector machine

(SVM). In [14], MFQE2.0 method replaced the SVM by bi-directional
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Figure 2: The framework of our JCEVC encoder, where both MC and PQE modules are realized by our DPEG network. For a

frame 𝑥𝑡 , the ME module calculates its MV 𝑣𝑡 with SPyNet and bi-directional IPPP structure. Meanwhile, the MVP module

derives an MV prediction, 𝑣𝑡 , based on an MV buffer of references. The MVDC module compresses and reconstructs the MV

difference 𝑑𝑡 = 𝑣𝑡 − 𝑣𝑡 with an auto-encoder, quantization and entropy coding. Then, the MC module utilizes the reconstructed

MV, 𝑣𝑡 = 𝑣𝑡 +𝑑𝑡 , to align the reconstructed frame 𝑥𝑡−1 to 𝑥𝑡 . The warped frame 𝑥
′

𝑡−1 is enhanced by the DPEG network to generate

a compensated frame 𝑥𝑚𝑡 . After that, the RC module compresses and reconstructs the texture residual 𝑟𝑡 = 𝑥𝑡 − 𝑥𝑚𝑡 . Finally,

the PQE module receives the residual compensation 𝑥𝑟𝑡 = 𝑥𝑚𝑡 + 𝑟𝑡 and the aligned reference 𝑥
′

𝑡−1, and employs two DPEGs with

weighted fusion to obtain the reconstructed frame 𝑥𝑡 . Aiming at an optimal RD efficiency, the compression and enhancement

processes are jointly trained.

long short-term memory (BiLSTM) and also improved the con-

volutional network of MFQE. [43] proposed a task-oriented flow

(TOFlow) with superiority to optical flow in video enhancement.

[16] leveraged spatial-temporal relationship of videos and proposed

to simultaneously increase their spatial resolutions and frame rates.

The visual enhancement is also introduced at the decoder-end of

HLVC [45]. In our work, we incorporate the enhancement module

into the reconstruction process, thereby leading to a joint training

of video compression and enhancement.

3 PROPOSED METHOD

Notations. Let 𝑥𝑡 denote the 𝑡-th frame in picture coding order of

an original video and 𝑥𝑡 denote its constructed frame. 𝑥𝑚𝑡 and 𝑥𝑟𝑡
represent the compensated frames of 𝑥𝑡 with motion and residual

information, respectively. The reconstructed (𝑡 − 1)-th frame, 𝑥𝑡−1,
is sent back for recurrent prediction. It is also aligned to 𝑥𝑡 and 𝑥

𝑟
𝑡 ,

resulting to 𝑥
′

𝑡−1 and 𝑥
′

𝑡−1, for MC and quality enhancement. The

MV matrix of 𝑥𝑡 is predicted as 𝑣𝑡 and finally denoted as 𝑣𝑡 after
ME. Their difference, 𝑑𝑡 = 𝑣𝑡 − 𝑣𝑡 , is compressed and reconstructed

as 𝑑𝑡 . The difference between 𝑥𝑡 and 𝑥
𝑚
𝑡 is represented as a residual

𝑟𝑡 , whose corresponding reconstruction is denoted by 𝑟𝑡 .

3.1 The JCEVC framework

As shown in Figure 2, the encoder of JCEVC consists of 6 modules:

ME, MVP, MVDC, MC, RC and PQE, among which we redesign

the MC and PQE modules and improve the remaining modules. All

modules are jointly trained for an optimized RD performance. This

coding procedure applies to all P frames while the context-adaptive

entropy model of [22] is utilized to compress I frames.

ME module. In JCEVC, we employ a bi-directional IPPP struc-

ture [46] with a GOP size of 15. The frames 0, 15 are coded as I

frames while the others are coded as P frames. Among them, the

frames 1∼7 are forwardly predicted from frame 0 while the frames

8∼14 are backwardly predicted from frame 15 of next GOP. To re-

move temporal redundancies, the ME module estimates the MV 𝑣𝑡
between adjacent frames: 𝑥𝑡 and 𝑥𝑡−1. In this paper, we employ a

low-complexity optical flow model, SPyNet [32], which combines

spatial pyramid and deep convolutional network for fast ME.

MVP module. Due to high spatial-temporal correlations be-

tween MVs, it is sensible to compress the MV difference 𝑑𝑡 instead
of MV values. We set 𝑑𝑡 = 𝑣𝑡 − 𝑣𝑡 , where 𝑣𝑡 is a predicted MV from

an MV buffer, which is constituted by the MV information of its

three preceding frames. The prediction is achieved by a light net-

work with a convolutional layer, two residual blocks and another

two convolutional layers. The channel number is 2 for the last layer

and 64 for each of the others. The convolutional kernel size and

stride are 3×3 and 1, respectively. Relu is utilized as the activation

function in all convolutional layers.

MVDCmodule. The MV difference 𝑑𝑡 ∈ 𝑅𝐻×𝑊 ×2, where𝐻 and

𝑊 are frame height and width, is compressed by MVDC module.

To reduce the coding bits, we employ an auto-encoder with four

downsampling layers and four upsampling layers that are imple-

mented with convolutions and deconvolutions, respectively. The

compact representation 𝑑𝑐𝑡 ∈ 𝑅
𝐻×𝑊
16 ×128 is further processed by

quantization and entropy coding, with the procedure presented in

[27]. The reconstructed MV can be calculated as 𝑣𝑡 = 𝑣𝑡 + 𝑑𝑡 .
MCmodule. The MC module utilizes the reconstructed previ-

ous frame, 𝑥𝑡−1 and the reconstructed MV, 𝑣𝑡 , to generate a warped
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Figure 3: The proposed DPEG network. An 𝛼-path with generator and ConvLSTM focuses on larger receptive field and global

structures; a 𝛽-path with RABs focuses on smaller receptive field and local textures. Their outputs are combined with a weighted

fusion. Sematic features (𝐹𝑡,1, 𝐹𝑡,2, 𝐹𝑡,3) are fed from 𝛼-path into 𝛽-path as a guidance. Here 𝐼 and 𝐼𝐸 are task-dependent, e.g.

𝐼 = 𝑥
′

𝑡−1, 𝐼𝐸 = 𝑥𝑚𝑡 in MC.

frame that is aligned to the current frame 𝑥𝑡 . The warped frame,

namely 𝑥
′

𝑡−1, is fed into the DPEG network to reconstruct an en-

hanced frame 𝑥𝑚𝑡 . A ConvLSTM model is deployed to use multiple

reference frames in history. This module will be elaborated in Sec-

tion 3.2.

RC module. The motion compensated and enhanced frame 𝑥𝑚𝑡
is further utilized to calculate the texture residual 𝑟𝑡 = 𝑥𝑡 − 𝑥𝑚𝑡 . Its

compression is finished with the same process to that of MDVC.

After this step, the reconstructed texture residual and compensated

frame are represented by 𝑟𝑡 and 𝑥
𝑟
𝑡 = 𝑥𝑚𝑡 + 𝑟𝑡 , respectively.

PQE module. The last module employs two DPEGs to enhance

𝑥𝑟𝑡 and 𝑥
′

𝑡−1, and further combines them as the reconstructed frame

𝑥𝑡 . In particular, 𝑥
′

𝑡−1 is a warped frame that aligns 𝑥𝑡−1 to 𝑥𝑚𝑡 ,

where the alignment process is realized by an ME and a warping

operation. Details of this module will be presented in Section 3.3.

The decoder. The compressed stream of JCEVC consists of

compressed MV residuals, compressed texture residuals and the

information of previously coded frames, from which we can easily

obtain 𝑑𝑡 , 𝑟𝑡 , 𝑥𝑡−1 and 𝑣𝑡 . Then 𝑥
𝑚
𝑡 can be derived with 𝑣𝑡 = 𝑣𝑡 +𝑑𝑡 ,

𝑥𝑡−1 and the MC module. Finally, the reconstructed frame 𝑥𝑡 is

obtained by 𝑥𝑟𝑡 = 𝑥𝑚𝑡 + 𝑟𝑡 , 𝑥𝑡−1 and the PQE module.

3.2 MC with DPEG network

In video coding, P frames generally have lower residuals than I

frames. The residual at 𝑡-th frame, 𝑟𝑡 is calculated between the

current frame 𝑥𝑡 and its motion compensated reference 𝑥𝑚𝑡 . To

further reduce the bits for 𝑟𝑡 under the same visual quality, we first

compensate the previous frame with a non-linear warp,

𝑥
′

𝑡−1 = Warp(𝑥𝑡−1, 𝑣𝑡 ); (1)

and then enhance the warped frame with DPEG network,

𝑥𝑚𝑡 = DPEG(𝑥
′

𝑡−1). (2)

The proposed DPEG network is implemented with dual-path

GAN and RABs. To date, dual-path networks have been adopted

in parallel processing of image denoising and enhancement tasks;

however, they have not yet been exploited in image reconstruction

after compression. The basic generator of GAN involves a de facto

downsampling process to increase its receptive field, whilst exclud-

ing texture details in the original frame. This is unhelpful in frame

reconstruction that is evaluated by full-reference quality metrics.

To address this issue, we add a complementary path with RABs for

video details, as shown in Figure 3. To avoid high computational

complexity, the DPEG is designed as a compact framework with

input 𝐼 and output 𝐼𝐸 . In the second step of MC as Equation (2),

𝐼 = 𝑥
′

𝑡−1, 𝐼𝐸 = 𝑥𝑚𝑡 .

𝛼-path. To increase the receptive field of low-dimensional fea-

tures, an encoder is employed with a convolutional layer with stride

1, three convolutional layers with stride 2 and three residual blocks.

The obtained sematic features, 𝐹𝑡,1 ∈ 𝑅𝐻×𝑊 ×𝐶 , 𝐹𝑡,2 ∈ 𝑅
𝐻
2 ×

𝑊
2 ×𝐶 ,

𝐹𝑡,3 ∈ 𝑅
𝐻
4 ×

𝑊
4 ×2𝐶 , are fed into 𝛽-path and the decoder. After that,

a ConvLSTM is inserted to fully utilize the reference information

of coded frames. The state and output vectors of ConvLSTM, 𝐶𝑡−1
and 𝐻𝑡−1, are fed into current network. The decoder part is set as

an inverse process of encoder with upsampling. To avoid sematic

information loss, a U-Net [35] is used to skip connect the sematic

features to the decoder so that the enhanced results contain the

original sematic information.

𝛽-path. This path consists of two convolutional layers with

stride 1, three RABs and three feature fusion blocks where down-

samlping is not applied. An RAB is composed of two residual blocks

and a channel attention block (CAB) [48]. Each RAB extracts a fea-

ture representation 𝐹𝐶𝑡 ∈ 𝑅𝐻×𝑊 ×𝐶 of 𝐶 channels, which is further

fused with the sematic feature 𝐹𝑡,𝑘 , 𝑘 = 1, 2, 3 from 𝛼-path. The
feature fusion block also includes an upsampling process to match

the dimensions of features. With a smaller receptive field, there

is less access to global features in 𝛽-path. Therefore, the fusion of

sematic features from 𝛼-path benefits the frame reconstruction.

Weighted fusion. To take advantage of both paths, we employ

a weighted summation of results:

𝐼𝐸 = 𝑤 · 𝐼𝛼 + (1 −𝑤) · 𝐼𝛽 , (3)
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where 𝑤 is a weight matrix to represent the dependence degree

of 𝐼𝐸 on 𝐼𝛼 . We utilize three convolutional layers and two residual

blocks to extract the saliency of frame and further warp it to (0, 1)
with a Sigmoid function.

The discriminator. The two paths of DPEG are co-trained by a

generative-adversarial process after the weighted fusion of Equa-

tion (3). The training of this process involves a discriminator with

attention mechanism. First, it utilizes four downsampling layers to

achieve a larger receptive field. Then, it employs attention mech-

anism and different pooling strategies to generate two attention

maps,𝑀𝑎𝑣𝑔 and𝑀𝑚𝑎𝑥 . After that, it multiplies the downsampled

frame with the two attention maps and concatenates them as an

feature map. Finally, it judges the obtained feature map after two

convolutions with stride 1. The𝑀𝑎𝑣𝑔 and𝑀𝑚𝑎𝑥 are also important

in the loss function for training.

3.3 PQE with DPEG networks

The compensated video frames are further enhanced before recon-

struction. There have been extensive studies to enhance the visual

quality or remove compression artifacts of video sequences. The

quality enhancement module has also been introduced to decoder-

end of deep video compression by [45]. In this paper, we deploy a

PQE module before reconstruction, which is thus jointly trained by

the encoder. The DPEG network is reused in this module due to its

effectiveness in visual enhancement.

Aiming at a better visual quality, two parallel DPEG networks

are adopted to enhance the compensated frame 𝑥𝑟𝑡 and the aligned

previous frame 𝑥
′

𝑡−1, respectively. The 𝑥
𝑟
𝑡 is compensated by 𝑥𝑚𝑡

and the reconstructed residual 𝑟𝑡 . The 𝑥
′

𝑡−1 represents the results of

aligning 𝑥𝑡−1 to 𝑥
𝑟
𝑡 , where the alignment process is a combination

of ME and warping: an MV is firstly calculated by SPyNet and then

utilized to warp 𝑥𝑡−1:

𝑥
′

𝑡−1 = Warp(𝑥𝑡−1,ME(𝑥𝑡−1, 𝑥
𝑟
𝑡 )). (4)

The 𝑥𝑟𝑡 and 𝑥
′

𝑡−1 frames are separately enhanced as 𝑥𝑟𝑡,𝐸 and 𝑥
′

𝑡−1,𝐸 ,

which are fused to obtain the final reconstruction 𝑥𝑡 :

𝑥𝑡 = 𝑤1 · 𝑥
𝑟
𝑡,𝐸 +𝑤2 · 𝑥

′

𝑡−1,𝐸 + (1 −𝑤1 −𝑤2) · 𝑥
𝑟
𝑡 , (5)

where the weights𝑤1 and𝑤2 are generated with the weight gen-

erator in Section 3.2 but are halved to avoid data overflow after

summation. The weight 1 −𝑤1 −𝑤2 is a penalty coefficient in case

of enhancement failures.

3.4 Joint training of JCEVC

Our training process consists of two phases. In the first phase (0

∼ 300K iterations), we perform a coarse-grain training with the

reference frame 𝑥𝑡−1 and learning rate 1e-4; while in the second

phase (300K ∼ 900 K iterations), we perform a fine-grain training

with the reference frame 𝑥𝑡−1 and learning rate 1e-5. In each phase,

we successively train the MVP, MVDC, MC, RC, PQE modules and

then perform a joint training of all modules. The ME module is

performed with the SPyNet without further training.

The reasons to adopt this joint training strategy are as follows.

In reigning video codecs, the RD optimization theory was proposed

to minimize the RD cost of

𝐽Compression = 𝜆𝐷 (𝑥𝑡 , 𝑥
𝑟
𝑡 ) + 𝑅(𝑥𝑡 , 𝑥

𝑟
𝑡 ), (6)

where 𝐷 and 𝑅 refer the compression distortion and bitrate, sepa-

rately. The objective of enhancement is to further reduce the dis-

tortion

𝐽Enhancement = 𝐷 (𝑥𝑡 , 𝑥𝑡 ) = 𝐷 (𝑥𝑡 , PQE(𝑥
𝑟
𝑡 , 𝑥𝑡−1)). (7)

Compared with reigning video codecs, the deep video codec has an

advantage that its end-to-end framework can be jointly optimized

with training on a large-scale dataset. Taking this advantage, we

propose to jointly train the compression and enhancement modules

of deep video coding. The objective is then set as to minimize the

total RD cost

𝐽joint = 𝜆𝐷 (𝑥𝑡 , 𝑥𝑡 ) + 𝑅(𝑥𝑡 , 𝑥
𝑟
𝑡 ) . (8)

Obviously, the joint training releases the burden of reconstruction.

The compression stage allows a higher 𝐷 , which can be eliminated

in the enhancement stage, with a reduced 𝑅. Hence, the overall RD
tradeoff is improved.

Inspired by the RD cost function, we employ the following loss

functions for the MVP, MVDC, MC, RC, PQE and joint training:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

LMVP = MSE(𝑣𝑡 , 𝑣𝑡 )

LMVDC = 𝜆MSE(𝑑𝑡 , 𝑑𝑡 ) + 𝑅𝑚𝑣𝑑
LMC = LG

LRC = 𝜆MSE(𝑟𝑡 , 𝑟𝑡 ) + 𝑅𝑟𝑒𝑠
LPQE = 𝐷 (𝑥𝑡 , 𝑥𝑡 )
LALL = 𝜆𝐷 (𝑥𝑡 , 𝑥𝑡 ) + (𝑅𝑚𝑣𝑑 + 𝑅𝑟𝑒𝑠 )

, (9)

where MSE denotes the mean squared error. 𝑅𝑚𝑣𝑑 and 𝑅𝑟𝑒𝑠 repre-
sent the bits consumed by MV difference and residuals after com-

pression, respectively. 𝐷 (·) represents the frame-level distortion,

which is calculated as MSE and 1−MS-SSIM in PSNR-oriented and

MS-SSIM-oriented codecs, respectively. 𝜆 is a coefficient for RD

tradeoff. LG is the loss function for generator of DPEG. The loss

functions for generator and discriminator are set as:

LG = 𝛾𝐸𝑥∼𝑥 [(𝑥𝑡 − G(𝑥
′

𝑡−1))
2]

+𝐸𝑥∼𝑥 [1 − D(G(𝑥
′

𝑡−1))
2]

+𝐸𝑥∼𝑥 [1 − 𝜙 (G(𝑥
′

𝑡−1))
2],

(10)

LD = 𝐸𝑥∼𝑥 [1 − D(𝑥𝑡 )
2] + 𝐸𝑥∼𝑥 [D(G(𝑥

′

𝑡−1))
2], (11)

where 𝜙 (·) represents the calculation of attention maps𝑀𝑎𝑣𝑔 and

𝑀𝑚𝑎𝑥 .

4 EXPERIMENTS

4.1 Experimental setup

Datasets. We train our JCEVC codec with the popular Vimeo-90k

[43] dataset, which consists of 89,000 video clips at a resolution

of 448×256. To report the performance of our method, we test on

H.265 CTC (including Class B at 1920×1080, Class C at 832×480

and Class D at 416×240) [6], MCL-JCV (at 1920×1080) [42], UVG

(at 1920×1080) [30] and VTL (at 352×288) [1]. In total, there are 42

HD videos and 23 low-resolution videos are tested.

Evaluation. We compare our method with the popular deep

codecs FVC [19], Liu’s [25], RLVC [46], Agustsson’s [3], HLVC

[45], M-LVC [24], Hu’s [18], Lu’s [26], DVC [27] as well as H.265

implemented by x265 LDP very fast mode. For fair comparison, the

results of compared methods are collected from their reports. The

consumed bits and reconstruction quality are evaluated by bpp and
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Figure 4: Compression of our JCEVC with 9 popular deep codecs and H.265 (x265 LDP very fast). The proposed JCEVC exhibits

significantly superior or at least competitive performance compared with the state-of-the-arts in each dataset.

Datasets DVC [27] Hu’s [18] Lu’s [26] Agustsson’s [3] HLVC [45] M-LVC [24] RLVC [46] Liu’s [25] FVC [19] JCEVC

Class B 5.66/-2.74 –/– -13.35/-7.93 –/– -11.75/-37.44 -36.55/-42.82 -24.20/-50.42 –/– -23.75/ -54.51 -44.19 /-58.29

Class C 25.88/-6.88 4.94/-32.44 –/– –/– 7.83/-23.63 –/– -4.67/-35.94 –/– -14.18 / -43.58 -8.58 /-44.10

Class D 15.34/-18.51 –/-32.43 -6.86/– –/– -12.57/ -52.56 -13.87/-36.27 -27.01 /-48.85 –/– -18.39/-51.19 -44.72 /-56.38

MCL-JCV –/– -10.60/-34.10 4.21/– -1.82/-33.61 –/– –/– –/– –/– -22.48 /-52.00 -31.21 / -51.17

UVG 10.40/8.05 –/– -7.56/-25.49 -8.80/-38.04 -1.37/-30.12 -12.11/-25.44 -13.48/-40.62 -49.42 /-30.70 -28.71/ -45.25 -47.62 / -77.60

VTL –/– –/-6.04 -16.05/– –/– –/– –/– –/– -9.51/2.42 -28.10 / -39.44 -60.02 /-41.98

Average 8.03/-5.02 -2.83/-26.25 -7.92/-16.71 -5.31/-35.83 -4.47/-35.94 -20.84/-34.84 -17.34/-43.96 -29.4 /-14.14 -22.60/ -46.66 -39.39 /-54.92

Table 1: Compression on BDBR results calculated by the PSNR vs. bpp andMS-SSIM vs. bpp curves. H.265 is set as the benchmark.

On average, our JCEVC significantly outperforms the state-of-the-arts.

PSNR/MS-SSIM, respectively. We also calculate the BDBR values

[4] that represents the average bit reduction with the same PSNR

or MS-SSIM.

Implementation details. We implement our model on Tensor-

flow with all training and testing performed on an NVIDIA RTX

2080Ti GPU. The batch size and 𝛾 are set as 4 and 1000, respec-

tively. For PSNR-oriented compression, we train four models with

different 𝜆 values from 512 to 2560; while for MS-SSIM-oriented

compression, we train another four models with 𝜆 from 8 to 48.

Detailed training process can be seen in Section 3.4.

4.2 Experimental results

Figure 4 shows the comparison between our JCEVC and the state-

of-the-arts. To evaluate our method to the maximum extent, we

test 6 video groups from 4 datasets and collect all available results

of compared codecs. The performances of codecs are shown by two

types of curves: PSNR vs. bpp and MS-SSIM vs. bpp. A curve above

others is considered with a superior RD performance. Three conclu-

sions can be drawn from the figure. First, all deep codecs achieve

competitive or superior performances compared with H.265 (x265

LDP very fast), which demonstrates the effectiveness of learning-

based video coding. Second, the deep video coding has been greatly

improved since 2019, which demonstrates the potential of learning-

based video coding. The recent deep codecs, such as FVC and Liu’s,

have significantly surpassed the H.265. We can envision a deep

video codec with comparable performance to H.266/VVC in the

foreseeable future. Third, our JCEVC achieves significantly supe-

rior performances than the state-of-the-arts in most datasets. For

example, in Class D by PSNR, UVG by MS-SSIM and VTL by PSNR,

the JCEVC achieves remarkably higher performance even compared
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with the 2nd best curves. In Class C by PSNR and MS-SSIM, the

JCEVC achieves comparable performances to FVC. While in other

figures, the JCEVC also surpasses all comparedmethods. These facts

undoubtedly demonstrate the superiority of our JCEVC model.

To quantitatively compare the video codecs, we also present the

BDBR results (with PSNR and MS-SSIM) of all available curves in

Table 1, where H.265 is also set as the benchmark. These results are

consistent with those in Figure 4 that our JCEVC always ranks the

best or 2nd best in all datasets. An interesting result occurs when

comparing FVC with JCEVC in MCL-JCV by MS-SSIM. The RD

curves indicates JCEVC is superior while the BDBR slightly prefers

the FVC. This conflict is due to the different definition domains to

interpolate and calculate BDBR [4], which is unusual and does not

affect the conclusion. On average, the JCEVC achieves a BDBR of

-39.39% or -54.92% by PSNR or MS-SSIM. This fact also supports the

superior efficiency of the JCEVC.

By summarizing Figure 4 and Table 1, there are some minor

issues to be clarified. First, all codecs show weak improvements

in CTC Class C. This fact might be attributed to higher motions in

this Class [26]. In particular, the temporal information (TI) values

of Classes B, C, D are 18.6, 24.0 and 21.5, respectively. Despite that,

our JCEVC still ranks the best and 2nd best in terms of BDBR by

PSNR and MS-SSIM, respectively. Second, fair comparison with

visual enhancement. This module was also adopted in HLVC. As

shown above, our JCEVC is significantly superior to this method

in terms of BDBR. Third, fair comparison with bi-directional IPPP

structure. This structure was also used by RLVCwhile the hierarchi-

cal B structure was introduced by HLVC. Our JCEVC significantly

outperforms the above two methods in terms of BDBR.

Regarding to computational complexity, some existing codecs

did not report their time costs. Among all available codecs (DVC

[27], Lu’s [26], M-LVC [24], RLVC [46], FVC [19] and JCEVC, where

the RLVC includes entropy coding for fair comparison), the time

cost magnitudes are in the order of 1e-2s to 1s per frame. Our JCEVC

is with a medium complexity of 0.246s (resp. 0.224s) per frame to

encode (resp. decode) Class D on 1080Ti. Its model parameter size

is 14.9M. This complexity is acceptable considering its promisingly

high RD improvement compared with its peers.

4.3 Ablation study

The ablation experiments are conducted with PSNR-based JCEVC.

Similar conclusions can be drawn with MS-SSIM.

Contributions of all modules. In JCEVC, we design a light

MVP, an MC with DPEG, a PQE with DPEGs and a joint training, as

shown in Figure 2. To examine the contributions of these modules,

we perform the following ablation study. A baseline method with a

simple but feasible framework (ME+MVDC+MC w/o DPEG+RC) is

examined first. Then, our designed modules (MVP, MC w/ DPEG,

PQE, joint training) are introduced sequentially to observe their RD

improvements. The average results on CTC class D are summarized

in Figure 5. With more designed modules, the RD performance is

continuously improved. For example, with PSNR=32dB, the bpps of

the five settings are 0.47, 0.45, 0.28, 0.20, 0.17, respectively, which

indicate the bpp savings at 4.3%, 37.8%, 28.6% and 15.0% by introduc-

ing MVP, MCw/ DPEG, PQE and joint training. This fact reveals the

Figure 5: Ablation study of all JCEVC modules. The RD per-

formances are kept improved with more modules, which

demonstrates the effectiveness of our design.

Figure 6: Comparison between the input (𝐼 ), the intermediate

results (𝐼𝛼 , 𝐼𝛽 ) and the output (𝐼𝐸 ) of DPEG in MC. Each path

has its own contributions.

effectiveness of our design, especially for the DPEG-based MC/PQE

and the joint training.

Contributions of individual paths in DPEG. The DPEG net-

work consists of an 𝛼-path and a 𝛽-path. To observe the contribu-

tions of each path, we compare the input (𝐼 = 𝑥
′

𝑡−1), the intermediate

results (𝐼𝛼 , 𝐼𝛽 ) and the output (𝐼𝐸 = 𝑥𝑚𝑡 ) of DPEG in MC. Figure 6

presents the results obtained by averaging the 1∼7-th frames of

all Class D sequences. It can be seen that both 𝐼𝛼 and 𝐼𝛽 improve

the PSNR of 𝐼 . By fusing the results of 𝐼𝛼 and 𝐼𝛽 with the weight

𝑤 (𝑤 > 0.5 when 𝐼𝛼 has a better visual quality), the resulted 𝐼𝐸
achieve a further high performance, which implies the complemen-

tarity between the two paths as well as the effectiveness of our

weight fusion. By the way, the ConvLSTM also contributes to the

RD performance, by reducing BDBR (in terms of PSNR) of 7.01% in

Class D.

Contributions of cross-path sematic feature embedding.

In Figure 3, we design the DPEG network with the sematic features

𝐹𝑡,1 ∈ 𝑅𝐻×𝑊 ×𝐶 , 𝐹𝑡,2 ∈ 𝑅
𝐻
2 ×

𝑊
2 ×𝐶 , 𝐹𝑡,3 ∈ 𝑅

𝐻
4 ×

𝑊
4 ×2𝐶 that are fed

from 𝛼-path to 𝛽-path. To investigate the impact of this cross-path

sematic feature embedding, we compare our JCEVC encoder with

its reduced version without these cross-path sematic features and

summarize the RD performances in Figure 7, where the results

are obtained by averaging the RD performances of all Class D se-

quences. Compared with x265 LDP very fast, the BDBR values of
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Figure 7: Comparison between JCEVC implementations with

and without cross-path sematic feature embedding. The use

of cross-path sematic features benefits the RD efficiency.

Figure 8: Comparison between the inputs (𝑥𝑟𝑡 , 𝑥
′

𝑡−1), the inter-

mediate results (𝑥𝑟𝑡,𝐸 , 𝑥
′

𝑡−1,𝐸 ) and the output (𝑥𝑡 ) in PQE. Both

inputs are enhanced and further fused to generate the re-

constructed frame 𝑥𝑡 that is of the highest quality among all

these results.

the two settings are -34.26% and -44.72%, respectively. It can be eas-

ily concluded that the cross-path features 𝐹𝑡,1, 𝐹𝑡,2, 𝐹𝑡,3 contributes
to the final coding performance.

Contributions of DPEG networks in PQE. The PQE module

utilizes two DPEG networks to enhance 𝑥𝑟𝑡 and 𝑥
′

𝑡−1 as 𝑥
𝑟
𝑡,𝐸 and

𝑥
′

𝑡−1,𝐸 , respectively. Then, it applies a weighted sum of 𝑥𝑟𝑡 , 𝑥
𝑟
𝑡,𝐸

and 𝑥
′

𝑡−1,𝐸 to obtain the final reconstruction 𝑥𝑡 . Figure 8 shows the

results of these pictures by averaging the 1∼7-th frames of all Class

D sequences. Obviously, each DPEG network contributes to the

final performance.With a weighted fusion, the finally reconstructed

frame 𝑥𝑡 is of a high visual quality in terms of PSNR. Therefore, it

is reasonable to apply two DPEG networks in PQE module.

Effectiveness of loss functions. The JCEVC adopts GAN loss

and MSE loss in MC and PQE modules, respectively. With different

loss functions, e.g., MSE loss for MC, or GAN loss for PQE, the

JCEVC achieves inferior RD performances, which can be seen in

Figure 9. As discussed in Section 3.4, the joint training allows a

higher 𝐷 in MC and further minimize it in PQE module. These

different distortion constraints might be located in the attainable

and unattainable regions of the perception-distortion tradeoff [5],

Figure 9: Comparison between JCEVC implementations with

different loss functions. The RD performances of JCEVC is

decreased with MSE loss for MC or GAN loss for PQE.

respectively. This can be taken as a plausible explanation that we

should use different loss functions in different modules.

4.4 Limitations

The H.266/VVC incorporates enhanced block partitioning, diver-

sified intra and inter predictions, refined ME and MC, extended

transform and quantization, improved entropy coding and adap-

tive deblocking filters with RD optimization [7]. As compared with

H.266 low delay P results in CTC [36], our JCEVC achieves a BDBR

(in PSNR) of 19.31% and a BDBR (in MS-SSIM) of -29.85%. In such

case, JCEVC is comparable with H.266 in terms of RD performance.

However, it is still imperative to realize or imitate more advanced

video coding techniques to surpass H.266. A hybrid framework to

take advantages of all deep codecs is feasible. In addition, the deep

video codecs prevail in the utilization of big video data. With a

joint training of all modules on large-scale datasets, the deep video

coding has a brighter outlook in a foreseeable future.

5 CONCLUSIONS

Nowadays, the deep video codecs have been extensively studied

with ever-increasing RD performance. To compete with reigning

codecs, a high-efficiency deep codec is strongly desired. In this

paper, we proposed an end-to-end deep video codec called JCEVC

that consists of ME, MVP, MVDC, MC, RC and PQE modules. We

designed a DEPG network with dual-path generators and cross-

path sematic feature embedding, and further reused it in both MC

and PQE modules. Aiming at a global optimization of the RD perfor-

mance, we also employed a joint training of deep video compression

and enhancement. Comprehensive studies on four popular datasets

have demonstrated the RD efficiency of our JCEVC method, which

outperforms the state-of-the-art deep video codecs.
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